Metamath Proof Explorer
Description: A function of nonempty domain is not empty. (Contributed by Thierry
Arnoux, 20-Nov-2023)
|
|
Ref |
Expression |
|
Assertion |
eldmne0 |
⊢ ( 𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ne0i |
⊢ ( 𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅ ) |
2 |
|
dmeq |
⊢ ( 𝐹 = ∅ → dom 𝐹 = dom ∅ ) |
3 |
|
dm0 |
⊢ dom ∅ = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( 𝐹 = ∅ → dom 𝐹 = ∅ ) |
5 |
4
|
necon3i |
⊢ ( dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅ ) |
6 |
1 5
|
syl |
⊢ ( 𝑋 ∈ dom 𝐹 → 𝐹 ≠ ∅ ) |