Metamath Proof Explorer


Theorem eldmne0

Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion eldmne0 ( 𝑋 ∈ dom 𝐹𝐹 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝑋 ∈ dom 𝐹 → dom 𝐹 ≠ ∅ )
2 dmeq ( 𝐹 = ∅ → dom 𝐹 = dom ∅ )
3 dm0 dom ∅ = ∅
4 2 3 eqtrdi ( 𝐹 = ∅ → dom 𝐹 = ∅ )
5 4 necon3i ( dom 𝐹 ≠ ∅ → 𝐹 ≠ ∅ )
6 1 5 syl ( 𝑋 ∈ dom 𝐹𝐹 ≠ ∅ )