| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elqsg | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ∈  ( dom  ( 𝑅  ↾  𝐴 )  /  ( 𝑅  ↾  𝐴 ) )  ↔  ∃ 𝑢  ∈  dom  ( 𝑅  ↾  𝐴 ) 𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eldmres2 | 
							⊢ ( 𝑢  ∈  V  →  ( 𝑢  ∈  dom  ( 𝑅  ↾  𝐴 )  ↔  ( 𝑢  ∈  𝐴  ∧  ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							elv | 
							⊢ ( 𝑢  ∈  dom  ( 𝑅  ↾  𝐴 )  ↔  ( 𝑢  ∈  𝐴  ∧  ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi1i | 
							⊢ ( ( 𝑢  ∈  dom  ( 𝑅  ↾  𝐴 )  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) )  ↔  ( ( 𝑢  ∈  𝐴  ∧  ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅 )  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ecres2 | 
							⊢ ( 𝑢  ∈  𝐴  →  [ 𝑢 ] ( 𝑅  ↾  𝐴 )  =  [ 𝑢 ] 𝑅 )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq2d | 
							⊢ ( 𝑢  ∈  𝐴  →  ( 𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 )  ↔  𝐵  =  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							pm5.32i | 
							⊢ ( ( 𝑢  ∈  𝐴  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) )  ↔  ( 𝑢  ∈  𝐴  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi2i | 
							⊢ ( ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  ( 𝑢  ∈  𝐴  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) ) )  ↔  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  ( 𝑢  ∈  𝐴  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							an21 | 
							⊢ ( ( ( 𝑢  ∈  𝐴  ∧  ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅 )  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) )  ↔  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  ( 𝑢  ∈  𝐴  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							an12 | 
							⊢ ( ( 𝑢  ∈  𝐴  ∧  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) )  ↔  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  ( 𝑢  ∈  𝐴  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3bitr4i | 
							⊢ ( ( ( 𝑢  ∈  𝐴  ∧  ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅 )  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) )  ↔  ( 𝑢  ∈  𝐴  ∧  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							bitri | 
							⊢ ( ( 𝑢  ∈  dom  ( 𝑅  ↾  𝐴 )  ∧  𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 ) )  ↔  ( 𝑢  ∈  𝐴  ∧  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							rexbii2 | 
							⊢ ( ∃ 𝑢  ∈  dom  ( 𝑅  ↾  𝐴 ) 𝐵  =  [ 𝑢 ] ( 𝑅  ↾  𝐴 )  ↔  ∃ 𝑢  ∈  𝐴 ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							bitrdi | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ∈  ( dom  ( 𝑅  ↾  𝐴 )  /  ( 𝑅  ↾  𝐴 ) )  ↔  ∃ 𝑢  ∈  𝐴 ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) ) )  |