| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eldmqsres | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ∈  ( dom  ( 𝑅  ↾  𝐴 )  /  ( 𝑅  ↾  𝐴 ) )  ↔  ∃ 𝑢  ∈  𝐴 ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑥  ∈  [ 𝑢 ] 𝑅 𝐵  =  [ 𝑢 ] 𝑅  ↔  ∃ 𝑥 ( 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							19.41v | 
							⊢ ( ∃ 𝑥 ( 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 )  ↔  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							bitri | 
							⊢ ( ∃ 𝑥  ∈  [ 𝑢 ] 𝑅 𝐵  =  [ 𝑢 ] 𝑅  ↔  ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rexbii | 
							⊢ ( ∃ 𝑢  ∈  𝐴 ∃ 𝑥  ∈  [ 𝑢 ] 𝑅 𝐵  =  [ 𝑢 ] 𝑅  ↔  ∃ 𝑢  ∈  𝐴 ( ∃ 𝑥 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝐵  =  [ 𝑢 ] 𝑅 ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							bitr4di | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ∈  ( dom  ( 𝑅  ↾  𝐴 )  /  ( 𝑅  ↾  𝐴 ) )  ↔  ∃ 𝑢  ∈  𝐴 ∃ 𝑥  ∈  [ 𝑢 ] 𝑅 𝐵  =  [ 𝑢 ] 𝑅 ) )  |