Metamath Proof Explorer


Theorem eldmressnALTV

Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion eldmressnALTV ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴𝐴 ∈ dom 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eldmres ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 ∈ { 𝐴 } ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) )
2 elsng ( 𝐵𝑉 → ( 𝐵 ∈ { 𝐴 } ↔ 𝐵 = 𝐴 ) )
3 eldmg ( 𝐵𝑉 → ( 𝐵 ∈ dom 𝑅 ↔ ∃ 𝑦 𝐵 𝑅 𝑦 ) )
4 3 bicomd ( 𝐵𝑉 → ( ∃ 𝑦 𝐵 𝑅 𝑦𝐵 ∈ dom 𝑅 ) )
5 2 4 anbi12d ( 𝐵𝑉 → ( ( 𝐵 ∈ { 𝐴 } ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ↔ ( 𝐵 = 𝐴𝐵 ∈ dom 𝑅 ) ) )
6 1 5 bitrd ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴𝐵 ∈ dom 𝑅 ) ) )
7 eqelb ( ( 𝐵 = 𝐴𝐵 ∈ dom 𝑅 ) ↔ ( 𝐵 = 𝐴𝐴 ∈ dom 𝑅 ) )
8 6 7 bitrdi ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴𝐴 ∈ dom 𝑅 ) ) )