Metamath Proof Explorer


Theorem eldmressnsn

Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion eldmressnsn ( 𝐴 ∈ dom 𝐹𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 snidg ( 𝐴 ∈ dom 𝐹𝐴 ∈ { 𝐴 } )
2 dmressnsn ( 𝐴 ∈ dom 𝐹 → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } )
3 1 2 eleqtrrd ( 𝐴 ∈ dom 𝐹𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) )