Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | eldmressnsn | ⊢ ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg | ⊢ ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ { 𝐴 } ) | |
2 | dmressnsn | ⊢ ( 𝐴 ∈ dom 𝐹 → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) | |
3 | 1 2 | eleqtrrd | ⊢ ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) |