Step |
Hyp |
Ref |
Expression |
1 |
|
dprdval.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
dprdval.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
3 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( DProd ‘ 〈 𝐺 , 𝑆 〉 ) → 〈 𝐺 , 𝑆 〉 ∈ dom DProd ) |
4 |
|
df-ov |
⊢ ( 𝐺 DProd 𝑆 ) = ( DProd ‘ 〈 𝐺 , 𝑆 〉 ) |
5 |
3 4
|
eleq2s |
⊢ ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) → 〈 𝐺 , 𝑆 〉 ∈ dom DProd ) |
6 |
|
df-br |
⊢ ( 𝐺 dom DProd 𝑆 ↔ 〈 𝐺 , 𝑆 〉 ∈ dom DProd ) |
7 |
5 6
|
sylibr |
⊢ ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) → 𝐺 dom DProd 𝑆 ) |
8 |
7
|
pm4.71ri |
⊢ ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ) ) |
9 |
1 2
|
dprdval |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ↔ 𝐴 ∈ ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) ) |
11 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) = ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) |
12 |
|
ovex |
⊢ ( 𝐺 Σg 𝑓 ) ∈ V |
13 |
11 12
|
elrnmpti |
⊢ ( 𝐴 ∈ ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ↔ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) |
14 |
10 13
|
bitrdi |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ↔ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) |
15 |
14
|
ancoms |
⊢ ( ( dom 𝑆 = 𝐼 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ↔ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) |
16 |
15
|
pm5.32da |
⊢ ( dom 𝑆 = 𝐼 → ( ( 𝐺 dom DProd 𝑆 ∧ 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ) |
17 |
8 16
|
syl5bb |
⊢ ( dom 𝑆 = 𝐼 → ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ) |