| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldprdi.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | eldprdi.w | ⊢ 𝑊  =  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  } | 
						
							| 3 |  | eldprdi.1 | ⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 ) | 
						
							| 4 |  | eldprdi.2 | ⊢ ( 𝜑  →  dom  𝑆  =  𝐼 ) | 
						
							| 5 |  | eldprdi.3 | ⊢ ( 𝜑  →  𝐹  ∈  𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝐺  Σg  𝑓 )  =  ( 𝐺  Σg  𝐹 ) ) | 
						
							| 8 | 7 | rspceeqv | ⊢ ( ( 𝐹  ∈  𝑊  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) )  →  ∃ 𝑓  ∈  𝑊 ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) | 
						
							| 9 | 5 6 8 | sylancl | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  𝑊 ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) | 
						
							| 10 | 1 2 | eldprd | ⊢ ( dom  𝑆  =  𝐼  →  ( ( 𝐺  Σg  𝐹 )  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  𝑊 ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝐹 )  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  𝑊 ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) ) | 
						
							| 12 | 3 9 11 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  ∈  ( 𝐺  DProd  𝑆 ) ) |