| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvval.t |
⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) |
| 2 |
|
dvval.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 3 |
|
eldv.g |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) |
| 4 |
|
eldv.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 5 |
|
eldv.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 6 |
|
eldv.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 7 |
1 2
|
dvfval |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) ) |
| 8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) ) |
| 9 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 D 𝐹 ) ↔ 〈 𝐵 , 𝐶 〉 ∈ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 11 |
|
df-br |
⊢ ( 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ↔ 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 D 𝐹 ) ) |
| 12 |
11
|
bicomi |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 D 𝐹 ) ↔ 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ) |
| 13 |
|
sneq |
⊢ ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } ) |
| 14 |
13
|
difeq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝐵 } ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑧 − 𝑥 ) = ( 𝑧 − 𝐵 ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) |
| 19 |
14 18
|
mpteq12dv |
⊢ ( 𝑥 = 𝐵 → ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) |
| 20 |
19 3
|
eqtr4di |
⊢ ( 𝑥 = 𝐵 → ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = 𝐺 ) |
| 21 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( 𝐺 limℂ 𝐵 ) ) |
| 23 |
22
|
opeliunxp2 |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( 𝐵 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) ) |
| 24 |
10 12 23
|
3bitr3g |
⊢ ( 𝜑 → ( 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ↔ ( 𝐵 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |