Metamath Proof Explorer
Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82.
(Contributed by NM, 23-Jul-1995)
|
|
Ref |
Expression |
|
Hypotheses |
elec.1 |
⊢ 𝐴 ∈ V |
|
|
elec.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
elec |
⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elec.1 |
⊢ 𝐴 ∈ V |
2 |
|
elec.2 |
⊢ 𝐵 ∈ V |
3 |
|
elecg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) |