Metamath Proof Explorer


Theorem elecg

Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion elecg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐵 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elimasng ( ( 𝐵𝑊𝐴𝑉 ) → ( 𝐴 ∈ ( 𝑅 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ 𝑅 ) )
2 1 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∈ ( 𝑅 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ 𝑅 ) )
3 df-ec [ 𝐵 ] 𝑅 = ( 𝑅 “ { 𝐵 } )
4 3 eleq2i ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐴 ∈ ( 𝑅 “ { 𝐵 } ) )
5 df-br ( 𝐵 𝑅 𝐴 ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ 𝑅 )
6 2 4 5 3bitr4g ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐵 𝑅 𝐴 ) )