Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82. (Contributed by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elecg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ ( 𝑅 “ { 𝐵 } ) ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) ) | |
2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ ( 𝑅 “ { 𝐵 } ) ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) ) |
3 | df-ec | ⊢ [ 𝐵 ] 𝑅 = ( 𝑅 “ { 𝐵 } ) | |
4 | 3 | eleq2i | ⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐴 ∈ ( 𝑅 “ { 𝐵 } ) ) |
5 | df-br | ⊢ ( 𝐵 𝑅 𝐴 ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) | |
6 | 2 4 5 | 3bitr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |