Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn1.w |
⊢ 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2
|
clwwlknbp |
⊢ ( 𝑌 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑌 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑌 ) = 𝑁 ) ) |
4 |
3 1
|
eleq2s |
⊢ ( 𝑌 ∈ 𝑊 → ( 𝑌 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑌 ) = 𝑁 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑌 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑌 ) = 𝑁 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝑌 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑌 ) = 𝑁 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) ) → ( 𝑌 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑌 ) = 𝑁 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) → 𝐾 ∈ ( 0 ... 𝑁 ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) ) → 𝐾 ∈ ( 0 ... 𝑁 ) ) |
10 |
|
simpl |
⊢ ( ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) → 𝑋 = ( 𝑌 cyclShift 𝐾 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) ) → 𝑋 = ( 𝑌 cyclShift 𝐾 ) ) |
12 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) |
13 |
9 11 12
|
3jca |
⊢ ( ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) ) → ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) ) |
14 |
|
2cshwcshw |
⊢ ( ( 𝑌 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑌 ) = 𝑁 ) → ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) → ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑋 cyclShift 𝑛 ) ) ) |
15 |
7 13 14
|
sylc |
⊢ ( ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) ) → ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑋 cyclShift 𝑛 ) ) |
16 |
15
|
ex |
⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝑋 = ( 𝑌 cyclShift 𝐾 ) ∧ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑌 cyclShift 𝑚 ) ) → ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑍 = ( 𝑋 cyclShift 𝑛 ) ) ) |