| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ℝ ↑m ( 1 ... 𝑛 ) ) = ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
| 3 |
|
df-ee |
⊢ 𝔼 = ( 𝑛 ∈ ℕ ↦ ( ℝ ↑m ( 1 ... 𝑛 ) ) ) |
| 4 |
|
ovex |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∈ V |
| 5 |
2 3 4
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝔼 ‘ 𝑁 ) = ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝐴 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ) |
| 7 |
|
reex |
⊢ ℝ ∈ V |
| 8 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 9 |
7 8
|
elmap |
⊢ ( 𝐴 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↔ 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 10 |
6 9
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |