Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | elefmndbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | efmndbas | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) | 
| 4 | 3 | eleq2i | ⊢ ( 𝐹 ∈ 𝐵 ↔ 𝐹 ∈ ( 𝐴 ↑m 𝐴 ) ) | 
| 5 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 6 | 5 5 | elmapd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ∈ ( 𝐴 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) | 
| 7 | 4 6 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) |