Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 29-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | elefmndbas2 | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | efmndbasabf | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } | 
| 4 | 3 | a1i | ⊢ ( 𝐹 ∈ 𝑉 → 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) | 
| 5 | 4 | eleq2d | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) ) | 
| 6 | feq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 ⟶ 𝐴 ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) | |
| 7 | eqid | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } | |
| 8 | 6 7 | elab2g | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) | 
| 9 | 5 8 | bitrd | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐴 ) ) |