| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eigvecval | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( eigvec ‘ 𝑇 )  =  { 𝑦  ∈  (  ℋ  ∖  0ℋ )  ∣  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝑦 )  =  ( 𝑥  ·ℎ  𝑦 ) } ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 𝐴  ∈  ( eigvec ‘ 𝑇 )  ↔  𝐴  ∈  { 𝑦  ∈  (  ℋ  ∖  0ℋ )  ∣  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝑦 )  =  ( 𝑥  ·ℎ  𝑦 ) } ) ) | 
						
							| 3 |  | eldif | ⊢ ( 𝐴  ∈  (  ℋ  ∖  0ℋ )  ↔  ( 𝐴  ∈   ℋ  ∧  ¬  𝐴  ∈  0ℋ ) ) | 
						
							| 4 |  | elch0 | ⊢ ( 𝐴  ∈  0ℋ  ↔  𝐴  =  0ℎ ) | 
						
							| 5 | 4 | necon3bbii | ⊢ ( ¬  𝐴  ∈  0ℋ  ↔  𝐴  ≠  0ℎ ) | 
						
							| 6 | 5 | anbi2i | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ¬  𝐴  ∈  0ℋ )  ↔  ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ ) ) | 
						
							| 7 | 3 6 | bitri | ⊢ ( 𝐴  ∈  (  ℋ  ∖  0ℋ )  ↔  ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ ) ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( 𝐴  ∈  (  ℋ  ∖  0ℋ )  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) )  ↔  ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑇 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝐴 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  ·ℎ  𝑦 )  =  ( 𝑥  ·ℎ  𝐴 ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑇 ‘ 𝑦 )  =  ( 𝑥  ·ℎ  𝑦 )  ↔  ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝑦 )  =  ( 𝑥  ·ℎ  𝑦 )  ↔  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) | 
						
							| 13 | 12 | elrab | ⊢ ( 𝐴  ∈  { 𝑦  ∈  (  ℋ  ∖  0ℋ )  ∣  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝑦 )  =  ( 𝑥  ·ℎ  𝑦 ) }  ↔  ( 𝐴  ∈  (  ℋ  ∖  0ℋ )  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) | 
						
							| 14 |  | df-3an | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) )  ↔  ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) | 
						
							| 15 | 8 13 14 | 3bitr4i | ⊢ ( 𝐴  ∈  { 𝑦  ∈  (  ℋ  ∖  0ℋ )  ∣  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝑦 )  =  ( 𝑥  ·ℎ  𝑦 ) }  ↔  ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) | 
						
							| 16 | 2 15 | bitrdi | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 𝐴  ∈  ( eigvec ‘ 𝑇 )  ↔  ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) ) |