Metamath Proof Explorer


Theorem eleigveccl

Description: Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eleigveccl ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ )

Proof

Step Hyp Ref Expression
1 eleigvec2 ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ( 𝑇𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) )
2 1 biimpa ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ( 𝑇𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) )
3 2 simp1d ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ )