Description: Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleigveccl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleigvec2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) ) | |
| 2 | 1 | biimpa | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) |
| 3 | 2 | simp1d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ ) |