Metamath Proof Explorer


Theorem elelpwi

Description: If A belongs to a part of C , then A belongs to C . (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion elelpwi ( ( 𝐴𝐵𝐵 ∈ 𝒫 𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 elpwi ( 𝐵 ∈ 𝒫 𝐶𝐵𝐶 )
2 1 sseld ( 𝐵 ∈ 𝒫 𝐶 → ( 𝐴𝐵𝐴𝐶 ) )
3 2 impcom ( ( 𝐴𝐵𝐵 ∈ 𝒫 𝐶 ) → 𝐴𝐶 )