Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 2 | eleq2 | ⊢ ( 𝐶 = 𝐷 → ( 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) ) | |
| 3 | 1 2 | sylan9bb | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) ) |