Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eleq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| eleq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | eleq12d | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | eleq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷 ) ) |
| 4 | 1 | eleq1d | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷 ) ) |
| 5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) ) |