| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 2 |
|
dfcleq |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 3 |
1 2
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 |
|
anbi2 |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 5 |
4
|
alexbii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 7 |
|
dfclel |
⊢ ( 𝐶 ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) |
| 8 |
|
dfclel |
⊢ ( 𝐶 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) |
| 9 |
6 7 8
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵 ) ) |