Description: Weaker version of eleq2 (but more general than elequ2 ) not depending on ax-ext nor df-cleq . (Contributed by BJ, 29-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eleq2w | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) | |
2 | 1 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦 ) ) ) |
3 | 2 | exbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑧 ( 𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦 ) ) ) |
4 | dfclel | ⊢ ( 𝐴 ∈ 𝑥 ↔ ∃ 𝑧 ( 𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) | |
5 | dfclel | ⊢ ( 𝐴 ∈ 𝑦 ↔ ∃ 𝑧 ( 𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦 ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |