Metamath Proof Explorer


Theorem eleqtrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrid.1 𝐴𝐵
eleqtrid.2 ( 𝜑𝐵 = 𝐶 )
Assertion eleqtrid ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eleqtrid.1 𝐴𝐵
2 eleqtrid.2 ( 𝜑𝐵 = 𝐶 )
3 1 a1i ( 𝜑𝐴𝐵 )
4 3 2 eleqtrd ( 𝜑𝐴𝐶 )