Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eleqtrrdi.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| eleqtrrdi.2 | ⊢ 𝐶 = 𝐵 | ||
| Assertion | eleqtrrdi | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrdi.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 2 | eleqtrrdi.2 | ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi | ⊢ 𝐵 = 𝐶 |
| 4 | 1 3 | eleqtrdi | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |