Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 | |
eleqtrrid.2 | ⊢ ( 𝜑 → 𝐶 = 𝐵 ) | ||
Assertion | eleqtrrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtrrid.2 | ⊢ ( 𝜑 → 𝐶 = 𝐵 ) | |
3 | 2 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
4 | 1 3 | eleqtrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |