Metamath Proof Explorer


Theorem eleqtrrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrrid.1 𝐴𝐵
eleqtrrid.2 ( 𝜑𝐶 = 𝐵 )
Assertion eleqtrrid ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eleqtrrid.1 𝐴𝐵
2 eleqtrrid.2 ( 𝜑𝐶 = 𝐵 )
3 2 eqcomd ( 𝜑𝐵 = 𝐶 )
4 1 3 eleqtrid ( 𝜑𝐴𝐶 )