Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 | |
| eleqtrrid.2 | ⊢ ( 𝜑 → 𝐶 = 𝐵 ) | ||
| Assertion | eleqtrrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrid.1 | ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtrrid.2 | ⊢ ( 𝜑 → 𝐶 = 𝐵 ) | |
| 3 | 2 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
| 4 | 1 3 | eleqtrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |