Metamath Proof Explorer
Description: If a class contains another class, then it contains some set.
(Contributed by Alan Sare, 25-Sep-2011)
|
|
Ref |
Expression |
|
Assertion |
elex2 |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
2 |
1
|
alrimiv |
⊢ ( 𝐴 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
3 |
|
elisset |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) |
4 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝑥 ∈ 𝐵 ) ) |
5 |
2 3 4
|
sylc |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 ∈ 𝐵 ) |