Metamath Proof Explorer


Theorem elex22

Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011)

Ref Expression
Assertion elex22 ( ( 𝐴𝐵𝐴𝐶 ) → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) )

Proof

Step Hyp Ref Expression
1 eleq1a ( 𝐴𝐵 → ( 𝑥 = 𝐴𝑥𝐵 ) )
2 eleq1a ( 𝐴𝐶 → ( 𝑥 = 𝐴𝑥𝐶 ) )
3 1 2 anim12ii ( ( 𝐴𝐵𝐴𝐶 ) → ( 𝑥 = 𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) )
4 3 alrimiv ( ( 𝐴𝐵𝐴𝐶 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) )
5 elisset ( 𝐴𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
6 5 adantr ( ( 𝐴𝐵𝐴𝐶 ) → ∃ 𝑥 𝑥 = 𝐴 )
7 exim ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) ) )
8 4 6 7 sylc ( ( 𝐴𝐵𝐴𝐶 ) → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) )