Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | elex22 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | eleq1a | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐶 ) ) | |
3 | 1 2 | anim12ii | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
4 | 3 | alrimiv | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
5 | elisset | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) | |
6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑥 𝑥 = 𝐴 ) |
7 | exim | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) | |
8 | 4 6 7 | sylc | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |