Metamath Proof Explorer


Theorem elfg

Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion elfg ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴𝑋 ∧ ∃ 𝑥𝐹 𝑥𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 fgval ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } )
2 1 eleq2d ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ) )
3 pweq ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 )
4 3 ineq2d ( 𝑦 = 𝐴 → ( 𝐹 ∩ 𝒫 𝑦 ) = ( 𝐹 ∩ 𝒫 𝐴 ) )
5 4 neeq1d ( 𝑦 = 𝐴 → ( ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) )
6 5 elrab ( 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) )
7 elfvdm ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas )
8 elpw2g ( 𝑋 ∈ dom fBas → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
9 7 8 syl ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
10 elin ( 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ( 𝑥𝐹𝑥 ∈ 𝒫 𝐴 ) )
11 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
12 11 anbi2i ( ( 𝑥𝐹𝑥 ∈ 𝒫 𝐴 ) ↔ ( 𝑥𝐹𝑥𝐴 ) )
13 10 12 bitri ( 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ( 𝑥𝐹𝑥𝐴 ) )
14 13 exbii ( ∃ 𝑥 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐹𝑥𝐴 ) )
15 n0 ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) )
16 df-rex ( ∃ 𝑥𝐹 𝑥𝐴 ↔ ∃ 𝑥 ( 𝑥𝐹𝑥𝐴 ) )
17 14 15 16 3bitr4i ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥𝐹 𝑥𝐴 )
18 17 a1i ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥𝐹 𝑥𝐴 ) )
19 9 18 anbi12d ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) ↔ ( 𝐴𝑋 ∧ ∃ 𝑥𝐹 𝑥𝐴 ) ) )
20 6 19 syl5bb ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ↔ ( 𝐴𝑋 ∧ ∃ 𝑥𝐹 𝑥𝐴 ) ) )
21 2 20 bitrd ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴𝑋 ∧ ∃ 𝑥𝐹 𝑥𝐴 ) ) )