Step |
Hyp |
Ref |
Expression |
1 |
|
fgval |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ) |
2 |
1
|
eleq2d |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ) ) |
3 |
|
pweq |
⊢ ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 ) |
4 |
3
|
ineq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ∩ 𝒫 𝑦 ) = ( 𝐹 ∩ 𝒫 𝐴 ) ) |
5 |
4
|
neeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) ) |
6 |
5
|
elrab |
⊢ ( 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) ) |
7 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) |
8 |
|
elpw2g |
⊢ ( 𝑋 ∈ dom fBas → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
10 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴 ) ) |
11 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) |
13 |
10 12
|
bitri |
⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) |
15 |
|
n0 |
⊢ ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ) |
16 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) |
17 |
14 15 16
|
3bitr4i |
⊢ ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) |
18 |
17
|
a1i |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) |
19 |
9 18
|
anbi12d |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) ) |
20 |
6 19
|
syl5bb |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) ) |
21 |
2 20
|
bitrd |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) ) |