Step |
Hyp |
Ref |
Expression |
1 |
|
fival |
⊢ ( 𝐵 ∈ 𝑊 → ( fi ‘ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) |
2 |
1
|
eleq2d |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ∩ 𝑥 ↔ 𝐴 = ∩ 𝑥 ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
5 |
4
|
elabg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 } ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
6 |
2 5
|
sylan9bbr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |