Metamath Proof Explorer


Theorem elfi

Description: Specific properties of an element of ( fiB ) . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion elfi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = 𝑥 ) )

Proof

Step Hyp Ref Expression
1 fival ( 𝐵𝑊 → ( fi ‘ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = 𝑥 } )
2 1 eleq2d ( 𝐵𝑊 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = 𝑥 } ) )
3 eqeq1 ( 𝑦 = 𝐴 → ( 𝑦 = 𝑥𝐴 = 𝑥 ) )
4 3 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = 𝑥 ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = 𝑥 ) )
5 4 elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = 𝑥 } ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = 𝑥 ) )
6 2 5 sylan9bbr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = 𝑥 ) )