Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ ( fi ‘ 𝐵 ) → 𝐴 ∈ V ) |
2 |
1
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) → 𝐴 ∈ V ) ) |
3 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 = ∩ 𝑥 ) |
4 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) → 𝑥 ≠ ∅ ) |
5 |
4
|
adantr |
⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → 𝑥 ≠ ∅ ) |
6 |
|
intex |
⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → ∩ 𝑥 ∈ V ) |
8 |
3 7
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 ∈ V ) |
9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 → 𝐴 ∈ V ) |
10 |
9
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 → 𝐴 ∈ V ) ) |
11 |
|
elfi |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
12 |
|
vprc |
⊢ ¬ V ∈ V |
13 |
|
elsni |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
14 |
13
|
inteqd |
⊢ ( 𝑥 ∈ { ∅ } → ∩ 𝑥 = ∩ ∅ ) |
15 |
|
int0 |
⊢ ∩ ∅ = V |
16 |
14 15
|
eqtrdi |
⊢ ( 𝑥 ∈ { ∅ } → ∩ 𝑥 = V ) |
17 |
16
|
eleq1d |
⊢ ( 𝑥 ∈ { ∅ } → ( ∩ 𝑥 ∈ V ↔ V ∈ V ) ) |
18 |
12 17
|
mtbiri |
⊢ ( 𝑥 ∈ { ∅ } → ¬ ∩ 𝑥 ∈ V ) |
19 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 = ∩ 𝑥 ) |
20 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 ∈ V ) |
21 |
19 20
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ∩ 𝑥 ∈ V ) |
22 |
18 21
|
nsyl3 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ¬ 𝑥 ∈ { ∅ } ) |
23 |
22
|
biantrud |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ¬ 𝑥 ∈ { ∅ } ) ) ) |
24 |
|
eldif |
⊢ ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ¬ 𝑥 ∈ { ∅ } ) ) |
25 |
23 24
|
bitr4di |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) ) |
26 |
25
|
pm5.32da |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) ↔ ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) ) ) |
27 |
|
ancom |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) ↔ ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) ) |
28 |
|
ancom |
⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) ↔ ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) ) |
29 |
26 27 28
|
3bitr4g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) ↔ ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) ) ) |
30 |
29
|
rexbidv2 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) |
31 |
11 30
|
bitrd |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) |
32 |
31
|
expcom |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ V → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) ) |
33 |
2 10 32
|
pm5.21ndd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) |