Step |
Hyp |
Ref |
Expression |
1 |
|
ibar |
⊢ ( 𝐴 ⊆ 𝑋 → ( ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
3 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
4 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
7 |
|
fgfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) |
8 |
7
|
eleq2d |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ 𝐴 ∈ 𝐹 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ 𝐴 ∈ 𝐹 ) ) |
10 |
2 6 9
|
3bitr2rd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) |