Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
2 |
1
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐽 ∈ Top ) |
3 |
|
fvssunirn |
⊢ ( Fil ‘ 𝑋 ) ⊆ ∪ ran Fil |
4 |
3
|
sseli |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ∪ ran Fil ) |
5 |
4
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ∈ ∪ ran Fil ) |
6 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
8 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 = ∪ 𝐽 ) |
10 |
9
|
pweqd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
11 |
7 10
|
sseqtrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 ∪ 𝐽 ) |
12 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
13 |
12
|
elflim2 |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽 ) ∧ ( 𝐴 ∈ ∪ 𝐽 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
14 |
13
|
baib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽 ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ ∪ 𝐽 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
15 |
2 5 11 14
|
syl3anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ ∪ 𝐽 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
16 |
9
|
eleq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ 𝐽 ) ) |
17 |
16
|
anbi1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ↔ ( 𝐴 ∈ ∪ 𝐽 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
18 |
15 17
|
bitr4d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |