| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flimval.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
anass |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) ) |
| 3 |
|
df-3an |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ) |
| 4 |
3
|
anbi1i |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 5 |
|
df-flim |
⊢ fLim = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) |
| 6 |
5
|
elmpocl |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ) |
| 7 |
1
|
flimval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐽 fLim 𝐹 ) = { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) |
| 8 |
7
|
eleq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) ) |
| 9 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 11 |
10
|
sseq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ↔ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) |
| 12 |
11
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) ) ) |
| 13 |
12
|
biancomd |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 14 |
13
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 15 |
|
an12 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 16 |
14 15
|
bitri |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 17 |
8 16
|
bitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) ) |
| 18 |
6 17
|
biadanii |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) ) |
| 19 |
2 4 18
|
3bitr4ri |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |