Step |
Hyp |
Ref |
Expression |
1 |
|
fmval |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ) ) |
3 |
|
eqid |
⊢ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) = ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) |
4 |
3
|
fbasrn |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐶 ) → ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
5 |
4
|
3comr |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
6 |
|
elfg |
⊢ ( ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ) ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) |
10 |
|
imaeq2 |
⊢ ( 𝑡 = 𝑥 → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ 𝑥 ) ) |
11 |
10
|
rspceeqv |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) → ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) |
12 |
8 9 11
|
sylancl |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) |
13 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐶 ) |
14 |
|
imassrn |
⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 |
15 |
|
frn |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ran 𝐹 ⊆ 𝑋 ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran 𝐹 ⊆ 𝑋 ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ran 𝐹 ⊆ 𝑋 ) |
18 |
14 17
|
sstrid |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑋 ) |
19 |
13 18
|
ssexd |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ V ) |
20 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) = ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) |
21 |
20
|
elrnmpt |
⊢ ( ( 𝐹 “ 𝑥 ) ∈ V → ( ( 𝐹 “ 𝑥 ) ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) ) |
22 |
19 21
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 “ 𝑥 ) ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) ) |
23 |
12 22
|
mpbird |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) |
24 |
10
|
cbvmptv |
⊢ ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) |
25 |
24
|
elrnmpt |
⊢ ( 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) → ( 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 “ 𝑥 ) ) ) |
26 |
25
|
ibi |
⊢ ( 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 “ 𝑥 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 “ 𝑥 ) ) |
28 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) → 𝑦 = ( 𝐹 “ 𝑥 ) ) |
29 |
28
|
sseq1d |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) → ( 𝑦 ⊆ 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
30 |
23 27 29
|
rexxfrd |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
31 |
30
|
anbi2d |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
32 |
2 7 31
|
3bitrd |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |