Step |
Hyp |
Ref |
Expression |
1 |
|
elfm2.l |
⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) |
2 |
|
elfm |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
3 |
|
ssfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) |
4 |
3 1
|
sseqtrrdi |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ 𝐿 ) |
5 |
4
|
sselda |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐿 ) |
6 |
5
|
adantrr |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ∈ 𝐿 ) |
7 |
6
|
3ad2antl2 |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ∈ 𝐿 ) |
8 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) |
9 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) |
10 |
9
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ↔ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
11 |
10
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
12 |
7 8 11
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
13 |
12
|
rexlimdvaa |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
14 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ( 𝑌 filGen 𝐵 ) ) |
15 |
|
elfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑥 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
16 |
14 15
|
syl5bb |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑥 ∈ 𝐿 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ 𝐿 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
18 |
|
imass2 |
⊢ ( 𝑦 ⊆ 𝑥 → ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) ) |
19 |
|
sstr2 |
⊢ ( ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
20 |
19
|
com12 |
⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ( ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
21 |
20
|
ad2antll |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) → ( ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
22 |
18 21
|
syl5 |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) → ( 𝑦 ⊆ 𝑥 → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
23 |
22
|
reximdv |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
24 |
23
|
expr |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
25 |
24
|
com23 |
⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
26 |
25
|
expimpd |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
27 |
17 26
|
sylbid |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ 𝐿 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
28 |
27
|
rexlimdv |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
29 |
13 28
|
impbid |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
30 |
29
|
anbi2d |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
31 |
2 30
|
bitrd |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |