Step |
Hyp |
Ref |
Expression |
1 |
|
elfm2.l |
⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) |
2 |
|
foima |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → ( 𝐹 “ 𝑌 ) = 𝑋 ) |
3 |
2
|
adantl |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐹 “ 𝑌 ) = 𝑋 ) |
4 |
|
fofun |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → Fun 𝐹 ) |
5 |
|
elfvdm |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) |
6 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ 𝑌 ∈ dom fBas ) → ( 𝐹 “ 𝑌 ) ∈ V ) |
7 |
4 5 6
|
syl2anr |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐹 “ 𝑌 ) ∈ V ) |
8 |
3 7
|
eqeltrrd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑋 ∈ V ) |
9 |
|
fof |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → 𝐹 : 𝑌 ⟶ 𝑋 ) |
10 |
1
|
elfm2 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
11 |
9 10
|
syl3an3 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
12 |
|
fgcl |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) |
13 |
1 12
|
eqeltrid |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
16 |
|
simprl |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ∈ 𝐿 ) |
17 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 |
18 |
|
fofn |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → 𝐹 Fn 𝑌 ) |
19 |
18
|
fndmd |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → dom 𝐹 = 𝑌 ) |
20 |
17 19
|
sseqtrid |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ) |
23 |
4
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → Fun 𝐹 ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → Fun 𝐹 ) |
25 |
1
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐿 ↔ 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ) |
26 |
|
elfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) |
29 |
25 28
|
syl5bb |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑦 ∈ 𝐿 ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) |
30 |
29
|
simprbda |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → 𝑦 ⊆ 𝑌 ) |
31 |
|
sseq2 |
⊢ ( dom 𝐹 = 𝑌 → ( 𝑦 ⊆ dom 𝐹 ↔ 𝑦 ⊆ 𝑌 ) ) |
32 |
31
|
biimpar |
⊢ ( ( dom 𝐹 = 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
33 |
19 32
|
sylan |
⊢ ( ( 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
34 |
33
|
3ad2antl3 |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
35 |
34
|
adantlr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
36 |
30 35
|
syldan |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → 𝑦 ⊆ dom 𝐹 ) |
37 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
38 |
24 36 37
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
39 |
38
|
biimpd |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 → 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
40 |
39
|
impr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) |
41 |
|
filss |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ∧ 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐿 ) |
42 |
15 16 22 40 41
|
syl13anc |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐿 ) |
43 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) = 𝐴 ) |
44 |
43
|
eqcomd |
⊢ ( ( 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) |
45 |
44
|
3ad2antl3 |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) |
47 |
|
imaeq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝐴 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) |
48 |
47
|
rspceeqv |
⊢ ( ( ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) |
49 |
42 46 48
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) |
50 |
49
|
rexlimdvaa |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
51 |
50
|
expimpd |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
52 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → 𝐴 = ( 𝐹 “ 𝑥 ) ) |
53 |
|
imassrn |
⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 |
54 |
|
forn |
⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → ran 𝐹 = 𝑋 ) |
55 |
54
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ran 𝐹 = 𝑋 ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ran 𝐹 = 𝑋 ) |
57 |
53 56
|
sseqtrid |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑋 ) |
58 |
52 57
|
eqsstrd |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → 𝐴 ⊆ 𝑋 ) |
59 |
|
eqimss2 |
⊢ ( 𝐴 = ( 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
60 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ 𝑥 ) ) |
61 |
60
|
sseq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
62 |
61
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐿 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) |
63 |
59 62
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) |
65 |
58 64
|
jca |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
66 |
65
|
rexlimdvaa |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) → ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
67 |
51 66
|
impbid |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
68 |
11 67
|
bitrd |
⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
69 |
68
|
3coml |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝑋 ∈ V ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
70 |
8 69
|
mpd3an3 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |