Metamath Proof Explorer


Theorem elfpw

Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion elfpw ( 𝐴 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( 𝐴𝐵𝐴 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝐴 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( 𝐴 ∈ 𝒫 𝐵𝐴 ∈ Fin ) )
2 elpwg ( 𝐴 ∈ Fin → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
3 2 pm5.32ri ( ( 𝐴 ∈ 𝒫 𝐵𝐴 ∈ Fin ) ↔ ( 𝐴𝐵𝐴 ∈ Fin ) )
4 1 3 bitri ( 𝐴 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( 𝐴𝐵𝐴 ∈ Fin ) )