Metamath Proof Explorer


Theorem elfrlmbasn0

Description: If the dimension of a free module over a ring is not 0, every element of its base set is not empty. (Contributed by AV, 10-Feb-2019)

Ref Expression
Hypotheses frlmfibas.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
frlmfibas.n 𝑁 = ( Base ‘ 𝑅 )
elfrlmbasn0.b 𝐵 = ( Base ‘ 𝐹 )
Assertion elfrlmbasn0 ( ( 𝐼𝑉𝐼 ≠ ∅ ) → ( 𝑋𝐵𝑋 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 frlmfibas.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
2 frlmfibas.n 𝑁 = ( Base ‘ 𝑅 )
3 elfrlmbasn0.b 𝐵 = ( Base ‘ 𝐹 )
4 1 2 3 frlmbasf ( ( 𝐼𝑉𝑋𝐵 ) → 𝑋 : 𝐼𝑁 )
5 4 ex ( 𝐼𝑉 → ( 𝑋𝐵𝑋 : 𝐼𝑁 ) )
6 f0dom0 ( 𝑋 : 𝐼𝑁 → ( 𝐼 = ∅ ↔ 𝑋 = ∅ ) )
7 6 biimprd ( 𝑋 : 𝐼𝑁 → ( 𝑋 = ∅ → 𝐼 = ∅ ) )
8 7 necon3d ( 𝑋 : 𝐼𝑁 → ( 𝐼 ≠ ∅ → 𝑋 ≠ ∅ ) )
9 8 com12 ( 𝐼 ≠ ∅ → ( 𝑋 : 𝐼𝑁𝑋 ≠ ∅ ) )
10 5 9 sylan9 ( ( 𝐼𝑉𝐼 ≠ ∅ ) → ( 𝑋𝐵𝑋 ≠ ∅ ) )