Description: If the dimension of a free module over a ring is not 0, every element of its base set is not empty. (Contributed by AV, 10-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmfibas.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
frlmfibas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | ||
elfrlmbasn0.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
Assertion | elfrlmbasn0 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∈ 𝐵 → 𝑋 ≠ ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmfibas.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
2 | frlmfibas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | |
3 | elfrlmbasn0.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
4 | 1 2 3 | frlmbasf | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ 𝑁 ) |
5 | 4 | ex | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑋 ∈ 𝐵 → 𝑋 : 𝐼 ⟶ 𝑁 ) ) |
6 | f0dom0 | ⊢ ( 𝑋 : 𝐼 ⟶ 𝑁 → ( 𝐼 = ∅ ↔ 𝑋 = ∅ ) ) | |
7 | 6 | biimprd | ⊢ ( 𝑋 : 𝐼 ⟶ 𝑁 → ( 𝑋 = ∅ → 𝐼 = ∅ ) ) |
8 | 7 | necon3d | ⊢ ( 𝑋 : 𝐼 ⟶ 𝑁 → ( 𝐼 ≠ ∅ → 𝑋 ≠ ∅ ) ) |
9 | 8 | com12 | ⊢ ( 𝐼 ≠ ∅ → ( 𝑋 : 𝐼 ⟶ 𝑁 → 𝑋 ≠ ∅ ) ) |
10 | 5 9 | sylan9 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∈ 𝐵 → 𝑋 ≠ ∅ ) ) |