Metamath Proof Explorer


Theorem elfv2ex

Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021)

Ref Expression
Assertion elfv2ex ( 𝐴 ∈ ( ( 𝐹𝐵 ) ‘ 𝐶 ) → 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝐵 ∈ V → ( 𝐴 ∈ ( ( 𝐹𝐵 ) ‘ 𝐶 ) → 𝐵 ∈ V ) )
2 fv2prc ( ¬ 𝐵 ∈ V → ( ( 𝐹𝐵 ) ‘ 𝐶 ) = ∅ )
3 2 eleq2d ( ¬ 𝐵 ∈ V → ( 𝐴 ∈ ( ( 𝐹𝐵 ) ‘ 𝐶 ) ↔ 𝐴 ∈ ∅ ) )
4 noel ¬ 𝐴 ∈ ∅
5 4 pm2.21i ( 𝐴 ∈ ∅ → 𝐵 ∈ V )
6 3 5 syl6bi ( ¬ 𝐵 ∈ V → ( 𝐴 ∈ ( ( 𝐹𝐵 ) ‘ 𝐶 ) → 𝐵 ∈ V ) )
7 1 6 pm2.61i ( 𝐴 ∈ ( ( 𝐹𝐵 ) ‘ 𝐶 ) → 𝐵 ∈ V )