Metamath Proof Explorer


Theorem elfvex

Description: If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015)

Ref Expression
Assertion elfvex ( 𝐴 ∈ ( 𝐹𝐵 ) → 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝐴 ∈ ( 𝐹𝐵 ) → 𝐵 ∈ dom 𝐹 )
2 1 elexd ( 𝐴 ∈ ( 𝐹𝐵 ) → 𝐵 ∈ V )