Metamath Proof Explorer


Theorem elfvexd

Description: If a function value has a member, then its argument is a set. Deduction form of elfvex . (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis elfvexd.1 ( 𝜑𝐴 ∈ ( 𝐵𝐶 ) )
Assertion elfvexd ( 𝜑𝐶 ∈ V )

Proof

Step Hyp Ref Expression
1 elfvexd.1 ( 𝜑𝐴 ∈ ( 𝐵𝐶 ) )
2 elfvex ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐶 ∈ V )
3 1 2 syl ( 𝜑𝐶 ∈ V )