Metamath Proof Explorer


Theorem elfvmptrab

Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Hypotheses elfvmptrab.f 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝑀𝜑 } )
elfvmptrab.v ( 𝑋𝑉𝑀 ∈ V )
Assertion elfvmptrab ( 𝑌 ∈ ( 𝐹𝑋 ) → ( 𝑋𝑉𝑌𝑀 ) )

Proof

Step Hyp Ref Expression
1 elfvmptrab.f 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝑀𝜑 } )
2 elfvmptrab.v ( 𝑋𝑉𝑀 ∈ V )
3 csbconstg ( 𝑥𝑉 𝑥 / 𝑚 𝑀 = 𝑀 )
4 3 eqcomd ( 𝑥𝑉𝑀 = 𝑥 / 𝑚 𝑀 )
5 rabeq ( 𝑀 = 𝑥 / 𝑚 𝑀 → { 𝑦𝑀𝜑 } = { 𝑦 𝑥 / 𝑚 𝑀𝜑 } )
6 4 5 syl ( 𝑥𝑉 → { 𝑦𝑀𝜑 } = { 𝑦 𝑥 / 𝑚 𝑀𝜑 } )
7 6 mpteq2ia ( 𝑥𝑉 ↦ { 𝑦𝑀𝜑 } ) = ( 𝑥𝑉 ↦ { 𝑦 𝑥 / 𝑚 𝑀𝜑 } )
8 1 7 eqtri 𝐹 = ( 𝑥𝑉 ↦ { 𝑦 𝑥 / 𝑚 𝑀𝜑 } )
9 csbconstg ( 𝑋𝑉 𝑋 / 𝑚 𝑀 = 𝑀 )
10 9 2 eqeltrd ( 𝑋𝑉 𝑋 / 𝑚 𝑀 ∈ V )
11 8 10 elfvmptrab1w ( 𝑌 ∈ ( 𝐹𝑋 ) → ( 𝑋𝑉𝑌 𝑋 / 𝑚 𝑀 ) )
12 9 eleq2d ( 𝑋𝑉 → ( 𝑌 𝑋 / 𝑚 𝑀𝑌𝑀 ) )
13 12 biimpd ( 𝑋𝑉 → ( 𝑌 𝑋 / 𝑚 𝑀𝑌𝑀 ) )
14 13 imdistani ( ( 𝑋𝑉𝑌 𝑋 / 𝑚 𝑀 ) → ( 𝑋𝑉𝑌𝑀 ) )
15 11 14 syl ( 𝑌 ∈ ( 𝐹𝑋 ) → ( 𝑋𝑉𝑌𝑀 ) )