| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvmptrab.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑉  ↦  { 𝑦  ∈  𝑀  ∣  𝜑 } ) | 
						
							| 2 |  | elfvmptrab.v | ⊢ ( 𝑋  ∈  𝑉  →  𝑀  ∈  V ) | 
						
							| 3 |  | csbconstg | ⊢ ( 𝑥  ∈  𝑉  →  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  =  𝑀 ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( 𝑥  ∈  𝑉  →  𝑀  =  ⦋ 𝑥  /  𝑚 ⦌ 𝑀 ) | 
						
							| 5 |  | rabeq | ⊢ ( 𝑀  =  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  →  { 𝑦  ∈  𝑀  ∣  𝜑 }  =  { 𝑦  ∈  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  ∣  𝜑 } ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑥  ∈  𝑉  →  { 𝑦  ∈  𝑀  ∣  𝜑 }  =  { 𝑦  ∈  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  ∣  𝜑 } ) | 
						
							| 7 | 6 | mpteq2ia | ⊢ ( 𝑥  ∈  𝑉  ↦  { 𝑦  ∈  𝑀  ∣  𝜑 } )  =  ( 𝑥  ∈  𝑉  ↦  { 𝑦  ∈  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  ∣  𝜑 } ) | 
						
							| 8 | 1 7 | eqtri | ⊢ 𝐹  =  ( 𝑥  ∈  𝑉  ↦  { 𝑦  ∈  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  ∣  𝜑 } ) | 
						
							| 9 |  | csbconstg | ⊢ ( 𝑋  ∈  𝑉  →  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  =  𝑀 ) | 
						
							| 10 | 9 2 | eqeltrd | ⊢ ( 𝑋  ∈  𝑉  →  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∈  V ) | 
						
							| 11 | 8 10 | elfvmptrab1w | ⊢ ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) ) | 
						
							| 12 | 9 | eleq2d | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ↔  𝑌  ∈  𝑀 ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  →  𝑌  ∈  𝑀 ) ) | 
						
							| 14 | 13 | imdistani | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑀 ) ) | 
						
							| 15 | 11 14 | syl | ⊢ ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑀 ) ) |