Step |
Hyp |
Ref |
Expression |
1 |
|
elfvmptrab.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑀 ∣ 𝜑 } ) |
2 |
|
elfvmptrab.v |
⊢ ( 𝑋 ∈ 𝑉 → 𝑀 ∈ V ) |
3 |
|
csbconstg |
⊢ ( 𝑥 ∈ 𝑉 → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = 𝑀 ) |
4 |
3
|
eqcomd |
⊢ ( 𝑥 ∈ 𝑉 → 𝑀 = ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ) |
5 |
|
rabeq |
⊢ ( 𝑀 = ⦋ 𝑥 / 𝑚 ⦌ 𝑀 → { 𝑦 ∈ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
6 |
4 5
|
syl |
⊢ ( 𝑥 ∈ 𝑉 → { 𝑦 ∈ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
7 |
6
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑀 ∣ 𝜑 } ) = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
8 |
1 7
|
eqtri |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
9 |
|
csbconstg |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 = 𝑀 ) |
10 |
9 2
|
eqeltrd |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) |
11 |
8 10
|
elfvmptrab1w |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
12 |
9
|
eleq2d |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ↔ 𝑌 ∈ 𝑀 ) ) |
13 |
12
|
biimpd |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 → 𝑌 ∈ 𝑀 ) ) |
14 |
13
|
imdistani |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀 ) ) |
15 |
11 14
|
syl |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀 ) ) |