Step |
Hyp |
Ref |
Expression |
1 |
|
elfvmptrab1.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
2 |
|
elfvmptrab1.v |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) |
3 |
|
ne0i |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) |
4 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
5 |
4
|
necon1ai |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ dom 𝐹 ) |
6 |
1
|
dmmptss |
⊢ dom 𝐹 ⊆ 𝑉 |
7 |
6
|
sseli |
⊢ ( 𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉 ) |
8 |
|
rabexg |
⊢ ( ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) |
9 |
7 2 8
|
3syl |
⊢ ( 𝑋 ∈ dom 𝐹 → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
11 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] 𝜑 |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑀 |
13 |
10 12
|
nfcsb |
⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑚 ⦌ 𝑀 |
14 |
11 13
|
nfrab |
⊢ Ⅎ 𝑥 { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } |
15 |
|
csbeq1 |
⊢ ( 𝑥 = 𝑋 → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) |
16 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] 𝜑 ) ) |
17 |
15 16
|
rabeqbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
18 |
10 14 17 1
|
fvmptf |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
19 |
7 9 18
|
syl2anc |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
20 |
19
|
eleq2d |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) ) |
21 |
|
elrabi |
⊢ ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) |
22 |
7 21
|
anim12i |
⊢ ( ( 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
23 |
22
|
ex |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
24 |
20 23
|
sylbid |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
25 |
3 5 24
|
3syl |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
26 |
25
|
pm2.43i |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |