| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvmptrab1.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑉  ↦  { 𝑦  ∈  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  ∣  𝜑 } ) | 
						
							| 2 |  | elfvmptrab1.v | ⊢ ( 𝑋  ∈  𝑉  →  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∈  V ) | 
						
							| 3 |  | ne0i | ⊢ ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  ( 𝐹 ‘ 𝑋 )  ≠  ∅ ) | 
						
							| 4 |  | ndmfv | ⊢ ( ¬  𝑋  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑋 )  =  ∅ ) | 
						
							| 5 | 4 | necon1ai | ⊢ ( ( 𝐹 ‘ 𝑋 )  ≠  ∅  →  𝑋  ∈  dom  𝐹 ) | 
						
							| 6 | 1 | dmmptss | ⊢ dom  𝐹  ⊆  𝑉 | 
						
							| 7 | 6 | sseli | ⊢ ( 𝑋  ∈  dom  𝐹  →  𝑋  ∈  𝑉 ) | 
						
							| 8 |  | rabexg | ⊢ ( ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∈  V  →  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 }  ∈  V ) | 
						
							| 9 | 7 2 8 | 3syl | ⊢ ( 𝑋  ∈  dom  𝐹  →  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 }  ∈  V ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑥 𝑋 | 
						
							| 11 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑋  /  𝑥 ] 𝜑 | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥 𝑀 | 
						
							| 13 | 10 12 | nfcsb | ⊢ Ⅎ 𝑥 ⦋ 𝑋  /  𝑚 ⦌ 𝑀 | 
						
							| 14 | 11 13 | nfrab | ⊢ Ⅎ 𝑥 { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 } | 
						
							| 15 |  | csbeq1 | ⊢ ( 𝑥  =  𝑋  →  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  =  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) | 
						
							| 16 |  | sbceq1a | ⊢ ( 𝑥  =  𝑋  →  ( 𝜑  ↔  [ 𝑋  /  𝑥 ] 𝜑 ) ) | 
						
							| 17 | 15 16 | rabeqbidv | ⊢ ( 𝑥  =  𝑋  →  { 𝑦  ∈  ⦋ 𝑥  /  𝑚 ⦌ 𝑀  ∣  𝜑 }  =  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 } ) | 
						
							| 18 | 10 14 17 1 | fvmptf | ⊢ ( ( 𝑋  ∈  𝑉  ∧  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 }  ∈  V )  →  ( 𝐹 ‘ 𝑋 )  =  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 } ) | 
						
							| 19 | 7 9 18 | syl2anc | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑋 )  =  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 } ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  ↔  𝑌  ∈  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 } ) ) | 
						
							| 21 |  | elrabi | ⊢ ( 𝑌  ∈  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 }  →  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) | 
						
							| 22 | 7 21 | anim12i | ⊢ ( ( 𝑋  ∈  dom  𝐹  ∧  𝑌  ∈  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 } )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( 𝑌  ∈  { 𝑦  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀  ∣  [ 𝑋  /  𝑥 ] 𝜑 }  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) ) ) | 
						
							| 24 | 20 23 | sylbid | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) ) ) | 
						
							| 25 | 3 5 24 | 3syl | ⊢ ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) ) ) | 
						
							| 26 | 25 | pm2.43i | ⊢ ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  ⦋ 𝑋  /  𝑚 ⦌ 𝑀 ) ) |