Step |
Hyp |
Ref |
Expression |
1 |
|
elfvmptrab1w.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
2 |
|
elfvmptrab1w.v |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) |
3 |
|
elfvdm |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ dom 𝐹 ) |
4 |
1
|
dmmptss |
⊢ dom 𝐹 ⊆ 𝑉 |
5 |
4
|
sseli |
⊢ ( 𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉 ) |
6 |
|
rabexg |
⊢ ( ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) |
7 |
5 2 6
|
3syl |
⊢ ( 𝑋 ∈ dom 𝐹 → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
9 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] 𝜑 |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑀 |
11 |
8 10
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑚 ⦌ 𝑀 |
12 |
9 11
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } |
13 |
|
csbeq1 |
⊢ ( 𝑥 = 𝑋 → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) |
14 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] 𝜑 ) ) |
15 |
13 14
|
rabeqbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
16 |
8 12 15 1
|
fvmptf |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
17 |
5 7 16
|
syl2anc |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
18 |
17
|
eleq2d |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) ) |
19 |
|
elrabi |
⊢ ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) |
20 |
5 19
|
anim12i |
⊢ ( ( 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
21 |
20
|
ex |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
22 |
18 21
|
sylbid |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
23 |
3 22
|
mpcom |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |