Metamath Proof Explorer


Theorem elfvne0

Description: If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024)

Ref Expression
Assertion elfvne0 ( 𝐴 ∈ ( 𝐹𝐵 ) → 𝐹 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐹𝐵 ) ≠ ∅ )
2 fveq1 ( 𝐹 = ∅ → ( 𝐹𝐵 ) = ( ∅ ‘ 𝐵 ) )
3 0fv ( ∅ ‘ 𝐵 ) = ∅
4 2 3 eqtrdi ( 𝐹 = ∅ → ( 𝐹𝐵 ) = ∅ )
5 4 necon3i ( ( 𝐹𝐵 ) ≠ ∅ → 𝐹 ≠ ∅ )
6 1 5 syl ( 𝐴 ∈ ( 𝐹𝐵 ) → 𝐹 ≠ ∅ )