Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 18-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elfvov1.o | ⊢ Rel dom 𝑂 | |
elfvov1.s | ⊢ 𝑆 = ( 𝐼 𝑂 𝑅 ) | ||
elfvov1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ‘ 𝑌 ) ) | ||
Assertion | elfvov1 | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvov1.o | ⊢ Rel dom 𝑂 | |
2 | elfvov1.s | ⊢ 𝑆 = ( 𝐼 𝑂 𝑅 ) | |
3 | elfvov1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ‘ 𝑌 ) ) | |
4 | n0i | ⊢ ( 𝑋 ∈ ( 𝑆 ‘ 𝑌 ) → ¬ ( 𝑆 ‘ 𝑌 ) = ∅ ) | |
5 | 3 4 | syl | ⊢ ( 𝜑 → ¬ ( 𝑆 ‘ 𝑌 ) = ∅ ) |
6 | 1 | ovprc1 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 𝑂 𝑅 ) = ∅ ) |
7 | 2 6 | eqtrid | ⊢ ( ¬ 𝐼 ∈ V → 𝑆 = ∅ ) |
8 | 7 | fveq1d | ⊢ ( ¬ 𝐼 ∈ V → ( 𝑆 ‘ 𝑌 ) = ( ∅ ‘ 𝑌 ) ) |
9 | 0fv | ⊢ ( ∅ ‘ 𝑌 ) = ∅ | |
10 | 8 9 | eqtrdi | ⊢ ( ¬ 𝐼 ∈ V → ( 𝑆 ‘ 𝑌 ) = ∅ ) |
11 | 5 10 | nsyl2 | ⊢ ( 𝜑 → 𝐼 ∈ V ) |