Metamath Proof Explorer


Theorem elfvov1

Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 18-May-2025)

Ref Expression
Hypotheses elfvov1.o Rel dom 𝑂
elfvov1.s 𝑆 = ( 𝐼 𝑂 𝑅 )
elfvov1.x ( 𝜑𝑋 ∈ ( 𝑆𝑌 ) )
Assertion elfvov1 ( 𝜑𝐼 ∈ V )

Proof

Step Hyp Ref Expression
1 elfvov1.o Rel dom 𝑂
2 elfvov1.s 𝑆 = ( 𝐼 𝑂 𝑅 )
3 elfvov1.x ( 𝜑𝑋 ∈ ( 𝑆𝑌 ) )
4 n0i ( 𝑋 ∈ ( 𝑆𝑌 ) → ¬ ( 𝑆𝑌 ) = ∅ )
5 3 4 syl ( 𝜑 → ¬ ( 𝑆𝑌 ) = ∅ )
6 1 ovprc1 ( ¬ 𝐼 ∈ V → ( 𝐼 𝑂 𝑅 ) = ∅ )
7 2 6 eqtrid ( ¬ 𝐼 ∈ V → 𝑆 = ∅ )
8 7 fveq1d ( ¬ 𝐼 ∈ V → ( 𝑆𝑌 ) = ( ∅ ‘ 𝑌 ) )
9 0fv ( ∅ ‘ 𝑌 ) = ∅
10 8 9 eqtrdi ( ¬ 𝐼 ∈ V → ( 𝑆𝑌 ) = ∅ )
11 5 10 nsyl2 ( 𝜑𝐼 ∈ V )