| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 2 |
|
3anass |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 3 |
2
|
baib |
⊢ ( 𝐾 ∈ ℤ → ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 4 |
1 3
|
sylan9bb |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 5 |
4
|
3impa |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 6 |
5
|
3comr |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |