Description: An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018) (Proof shortened by OpenAI, 25-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elfz0add | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝑁 ∈ ( 0 ... 𝐴 ) → 𝑁 ∈ ( 0 ... ( 𝐴 + 𝐵 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
2 | uzid | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
4 | uzaddcl | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
5 | 3 4 | sylan | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
6 | fzss2 | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 0 ... 𝐴 ) ⊆ ( 0 ... ( 𝐴 + 𝐵 ) ) ) | |
7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 0 ... 𝐴 ) ⊆ ( 0 ... ( 𝐴 + 𝐵 ) ) ) |
8 | 7 | sseld | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝑁 ∈ ( 0 ... 𝐴 ) → 𝑁 ∈ ( 0 ... ( 𝐴 + 𝐵 ) ) ) ) |