Metamath Proof Explorer


Theorem elfz0add

Description: An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion elfz0add ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝑁 ∈ ( 0 ... 𝐴 ) → 𝑁 ∈ ( 0 ... ( 𝐴 + 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝐴 ∈ ℕ0𝐴 ∈ ℤ )
2 uzid ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ𝐴 ) )
3 1 2 syl ( 𝐴 ∈ ℕ0𝐴 ∈ ( ℤ𝐴 ) )
4 uzaddcl ( ( 𝐴 ∈ ( ℤ𝐴 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ𝐴 ) )
5 3 4 sylan ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ𝐴 ) )
6 fzss2 ( ( 𝐴 + 𝐵 ) ∈ ( ℤ𝐴 ) → ( 0 ... 𝐴 ) ⊆ ( 0 ... ( 𝐴 + 𝐵 ) ) )
7 5 6 syl ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 0 ... 𝐴 ) ⊆ ( 0 ... ( 𝐴 + 𝐵 ) ) )
8 7 sseld ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝑁 ∈ ( 0 ... 𝐴 ) → 𝑁 ∈ ( 0 ... ( 𝐴 + 𝐵 ) ) ) )