Metamath Proof Explorer


Theorem elfz0lmr

Description: A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfz0lmr ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elfzlmr ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) )
2 biid ( 𝐾 = 0 ↔ 𝐾 = 0 )
3 0p1e1 ( 0 + 1 ) = 1
4 3 oveq1i ( ( 0 + 1 ) ..^ 𝑁 ) = ( 1 ..^ 𝑁 )
5 4 eleq2i ( 𝐾 ∈ ( ( 0 + 1 ) ..^ 𝑁 ) ↔ 𝐾 ∈ ( 1 ..^ 𝑁 ) )
6 biid ( 𝐾 = 𝑁𝐾 = 𝑁 )
7 2 5 6 3orbi123i ( ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ↔ ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) )
8 1 7 sylib ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) )