Description: A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elfz0lmr | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzlmr | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) | |
2 | biid | ⊢ ( 𝐾 = 0 ↔ 𝐾 = 0 ) | |
3 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
4 | 3 | oveq1i | ⊢ ( ( 0 + 1 ) ..^ 𝑁 ) = ( 1 ..^ 𝑁 ) |
5 | 4 | eleq2i | ⊢ ( 𝐾 ∈ ( ( 0 + 1 ) ..^ 𝑁 ) ↔ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) |
6 | biid | ⊢ ( 𝐾 = 𝑁 ↔ 𝐾 = 𝑁 ) | |
7 | 2 5 6 | 3orbi123i | ⊢ ( ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ↔ ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |
8 | 1 7 | sylib | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |