Metamath Proof Explorer


Theorem elfz1end

Description: A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion elfz1end ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( 1 ... 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elnnuz ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( ℤ ‘ 1 ) )
2 1 biimpi ( 𝐴 ∈ ℕ → 𝐴 ∈ ( ℤ ‘ 1 ) )
3 nnz ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ )
4 uzid ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ𝐴 ) )
5 3 4 syl ( 𝐴 ∈ ℕ → 𝐴 ∈ ( ℤ𝐴 ) )
6 eluzfz ( ( 𝐴 ∈ ( ℤ ‘ 1 ) ∧ 𝐴 ∈ ( ℤ𝐴 ) ) → 𝐴 ∈ ( 1 ... 𝐴 ) )
7 2 5 6 syl2anc ( 𝐴 ∈ ℕ → 𝐴 ∈ ( 1 ... 𝐴 ) )
8 elfznn ( 𝐴 ∈ ( 1 ... 𝐴 ) → 𝐴 ∈ ℕ )
9 7 8 impbii ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( 1 ... 𝐴 ) )