| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0uz |
⊢ ( 𝐾 ∈ ℕ0 ↔ 𝐾 ∈ ( ℤ≥ ‘ 0 ) ) |
| 2 |
1
|
anbi1i |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 3 |
|
eluznn0 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑁 ∈ ℕ0 ) |
| 4 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ≤ 𝑁 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ≤ 𝑁 ) |
| 6 |
3 5
|
jca |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) |
| 7 |
|
nn0z |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) |
| 8 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 9 |
|
eluz |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
| 11 |
10
|
biimprd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑁 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 12 |
11
|
impr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 13 |
6 12
|
impbida |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 14 |
13
|
pm5.32i |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 15 |
2 14
|
bitr3i |
⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 16 |
|
elfzuzb |
⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 17 |
|
3anass |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 18 |
15 16 17
|
3bitr4i |
⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) |